Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add concurrency to the find-large-objects scrubber subcommand #8291

Merged
merged 5 commits into from
Jul 5, 2024

Conversation

arpad-m
Copy link
Member

@arpad-m arpad-m commented Jul 5, 2024

The find-large-objects scrubber subcommand is quite fast if you run it in an environment with low latency to the S3 bucket (say an EC2 instance in the same region). However, the higher the latency gets, the slower the command becomes. Therefore, add a concurrency param and make it parallelized. This doesn't change that general relationship, but at least lets us do multiple requests in parallel and therefore hopefully faster.

Running with concurrency of 64 (default):

2024-07-05T17:30:22.882959Z  INFO lazy_load_identity [...]
[...]
2024-07-05T17:30:28.289853Z  INFO Scanned 500 shards. [...]

With concurrency of 1, simulating state before this PR:

2024-07-05T17:31:43.375153Z  INFO lazy_load_identity [...]
[...]
2024-07-05T17:33:51.987092Z  INFO Scanned 500 shards. [...]

In other words, to list 500 shards, speed is increased from 2:08 minutes to 6 seconds.

Follow-up of #8257, part of #5431

@arpad-m arpad-m requested review from problame and skyzh July 5, 2024 17:38
Copy link
Member

@skyzh skyzh left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

LGTM

storage_scrubber/src/find_large_objects.rs Show resolved Hide resolved
Copy link

github-actions bot commented Jul 5, 2024

3042 tests run: 2927 passed, 0 failed, 115 skipped (full report)


Code coverage* (full report)

  • functions: 32.6% (6934 of 21279 functions)
  • lines: 50.0% (54491 of 108996 lines)

* collected from Rust tests only


The comment gets automatically updated with the latest test results
9c5e2f3 at 2024-07-05T20:22:56.387Z :recycle:

arpad-m added 2 commits July 5, 2024 21:12
The atomic wasn't required after all
@skyzh
Copy link
Member

skyzh commented Jul 5, 2024

created a tracking issue for test lsn lease flaky: #8293

@arpad-m arpad-m enabled auto-merge (squash) July 5, 2024 19:42
@arpad-m arpad-m merged commit 0a937b7 into main Jul 5, 2024
65 checks passed
@arpad-m arpad-m deleted the arpad/scrubber_ls_larger branch July 5, 2024 20:36
VladLazar pushed a commit that referenced this pull request Jul 8, 2024
The find-large-objects scrubber subcommand is quite fast if you run it
in an environment with low latency to the S3 bucket (say an EC2 instance
in the same region). However, the higher the latency gets, the slower
the command becomes. Therefore, add a concurrency param and make it
parallelized. This doesn't change that general relationship, but at
least lets us do multiple requests in parallel and therefore hopefully
faster.

Running with concurrency of 64 (default):

```
2024-07-05T17:30:22.882959Z  INFO lazy_load_identity [...]
[...]
2024-07-05T17:30:28.289853Z  INFO Scanned 500 shards. [...]
```

With concurrency of 1, simulating state before this PR:

```
2024-07-05T17:31:43.375153Z  INFO lazy_load_identity [...]
[...]
2024-07-05T17:33:51.987092Z  INFO Scanned 500 shards. [...]
```

In other words, to list 500 shards, speed is increased from 2:08 minutes
to 6 seconds.

Follow-up of  #8257, part of #5431
VladLazar pushed a commit that referenced this pull request Jul 8, 2024
The find-large-objects scrubber subcommand is quite fast if you run it
in an environment with low latency to the S3 bucket (say an EC2 instance
in the same region). However, the higher the latency gets, the slower
the command becomes. Therefore, add a concurrency param and make it
parallelized. This doesn't change that general relationship, but at
least lets us do multiple requests in parallel and therefore hopefully
faster.

Running with concurrency of 64 (default):

```
2024-07-05T17:30:22.882959Z  INFO lazy_load_identity [...]
[...]
2024-07-05T17:30:28.289853Z  INFO Scanned 500 shards. [...]
```

With concurrency of 1, simulating state before this PR:

```
2024-07-05T17:31:43.375153Z  INFO lazy_load_identity [...]
[...]
2024-07-05T17:33:51.987092Z  INFO Scanned 500 shards. [...]
```

In other words, to list 500 shards, speed is increased from 2:08 minutes
to 6 seconds.

Follow-up of  #8257, part of #5431
VladLazar pushed a commit that referenced this pull request Jul 8, 2024
The find-large-objects scrubber subcommand is quite fast if you run it
in an environment with low latency to the S3 bucket (say an EC2 instance
in the same region). However, the higher the latency gets, the slower
the command becomes. Therefore, add a concurrency param and make it
parallelized. This doesn't change that general relationship, but at
least lets us do multiple requests in parallel and therefore hopefully
faster.

Running with concurrency of 64 (default):

```
2024-07-05T17:30:22.882959Z  INFO lazy_load_identity [...]
[...]
2024-07-05T17:30:28.289853Z  INFO Scanned 500 shards. [...]
```

With concurrency of 1, simulating state before this PR:

```
2024-07-05T17:31:43.375153Z  INFO lazy_load_identity [...]
[...]
2024-07-05T17:33:51.987092Z  INFO Scanned 500 shards. [...]
```

In other words, to list 500 shards, speed is increased from 2:08 minutes
to 6 seconds.

Follow-up of  #8257, part of #5431
VladLazar pushed a commit that referenced this pull request Jul 8, 2024
The find-large-objects scrubber subcommand is quite fast if you run it
in an environment with low latency to the S3 bucket (say an EC2 instance
in the same region). However, the higher the latency gets, the slower
the command becomes. Therefore, add a concurrency param and make it
parallelized. This doesn't change that general relationship, but at
least lets us do multiple requests in parallel and therefore hopefully
faster.

Running with concurrency of 64 (default):

```
2024-07-05T17:30:22.882959Z  INFO lazy_load_identity [...]
[...]
2024-07-05T17:30:28.289853Z  INFO Scanned 500 shards. [...]
```

With concurrency of 1, simulating state before this PR:

```
2024-07-05T17:31:43.375153Z  INFO lazy_load_identity [...]
[...]
2024-07-05T17:33:51.987092Z  INFO Scanned 500 shards. [...]
```

In other words, to list 500 shards, speed is increased from 2:08 minutes
to 6 seconds.

Follow-up of  #8257, part of #5431
VladLazar pushed a commit that referenced this pull request Jul 8, 2024
The find-large-objects scrubber subcommand is quite fast if you run it
in an environment with low latency to the S3 bucket (say an EC2 instance
in the same region). However, the higher the latency gets, the slower
the command becomes. Therefore, add a concurrency param and make it
parallelized. This doesn't change that general relationship, but at
least lets us do multiple requests in parallel and therefore hopefully
faster.

Running with concurrency of 64 (default):

```
2024-07-05T17:30:22.882959Z  INFO lazy_load_identity [...]
[...]
2024-07-05T17:30:28.289853Z  INFO Scanned 500 shards. [...]
```

With concurrency of 1, simulating state before this PR:

```
2024-07-05T17:31:43.375153Z  INFO lazy_load_identity [...]
[...]
2024-07-05T17:33:51.987092Z  INFO Scanned 500 shards. [...]
```

In other words, to list 500 shards, speed is increased from 2:08 minutes
to 6 seconds.

Follow-up of  #8257, part of #5431
VladLazar pushed a commit that referenced this pull request Jul 8, 2024
The find-large-objects scrubber subcommand is quite fast if you run it
in an environment with low latency to the S3 bucket (say an EC2 instance
in the same region). However, the higher the latency gets, the slower
the command becomes. Therefore, add a concurrency param and make it
parallelized. This doesn't change that general relationship, but at
least lets us do multiple requests in parallel and therefore hopefully
faster.

Running with concurrency of 64 (default):

```
2024-07-05T17:30:22.882959Z  INFO lazy_load_identity [...]
[...]
2024-07-05T17:30:28.289853Z  INFO Scanned 500 shards. [...]
```

With concurrency of 1, simulating state before this PR:

```
2024-07-05T17:31:43.375153Z  INFO lazy_load_identity [...]
[...]
2024-07-05T17:33:51.987092Z  INFO Scanned 500 shards. [...]
```

In other words, to list 500 shards, speed is increased from 2:08 minutes
to 6 seconds.

Follow-up of  #8257, part of #5431
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

2 participants